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Abstract

Passive missiles including short-range or within visual range air to air missiles

(SRAAMs or WVRAAMs) and Man portable air defense systems (MANPADS)

are an extraordinary danger for regular civilian and military airplane. This pos-

tulation intends to find approaches towards that could be utilized in a passive

missile approach warning system. The initial segment of the study depends on

spectrum analysis of the missile plume and determination of most suitable range

for identifying Passive missiles. By looking at the benefits, drawbacks of work-

ing in different ranges and furthermore dissecting their innovative difficulties, this

thesis closed to choose solar blind UV (SBUV) range for rocket recognition to be

most appropriate.

After this basic quest, the two main objectives of the missile detection system are

to detect the missile after de-cluttering from background and classifying it as a

threatening or approaching missile from a sequence of images. The detection is

based on convolution neural networks (CNN), moving object tracking algorithms

and post processors. The greatest challenge in detection through CNN models

is the availability of training data. This requirement of data synthesis has been

catered for in this research through 3d simulations in decided spectrum.

Direction of motion of the detected threats and speed of motion has been estimated

using moving object tracking techniques and extended Kalman filter (EKF), and

same has been utilized to classify the missiles as approaching or non-approaching

missiles. Same information has also been used to classify a moving target as a

missile or another flying jet. Position and range estimation of the threats can

also be done using EKF but unfortunately some of the desired parameters for this

calculation were not available without actual sensor. Therefore, same has been

left for future research work.
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Chapter 1

Introduction

1.1 Background

Airplane flying in battle and other perilous regions constantly face the risk of being

shot somewhere by Missiles.

Examination of airplane misfortunes because of enemy activity since the 1960s

shows that basically 70% of all misfortunes were licensed to passive heat seeking

missiles. This might be astonishing fact because radar guided Surface to Air Mis-

sile systems (SAMs) have larger engagement ranges, fast response, better maneu-

vering potential, greater warheads carrying capability and are much more precise.

In any case, the primary driver why passive missile assaults were so powerful was

that it is extremely hard to identify them. As shown in Figure 1.1, these missiles

with their detectors, lock onto the heat signature of aircraft engine and quietly hit

into their target.

In Recent Conflicts history, 80% of all achieved Missile kill were unobserved shots.

One of the leading requirements to come out of the recent conflict in Iraq and

Afghanistan is to know when you are being shot at. Capt. Paul over street, pro-

gram manager for USN Electronic Warfare said that missile Kill were unobserved

shots causing maximum damages and there was not much precaution available [1]

(TMC News, Nov 13, 2008) [2].

1
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Figure 1.1: IR guided missile seeking aircraft tail [2]

1.2 Spectral Emissions of Missiles & MANPADS

A guided missile can be separated into three frameworks, control system, warhead

and drive, all fixed in an air frame. Solid propellant rocket is utilized to give

propulsion with a burn time of the order of seconds, which is sufficient for speed

increase upto speeds 3.5 Mach which can be even higher for modern rockets and

missiles as shown in Figure 1.2.

In any case, the primary driver why passive missile assaults were so powerful was

that it is extremely hard to identify them.

The hot plume of a missile has characteristic spectral signatures. The emissions

are in the Ultraviolet band (upto 400 nm), Visible band (450− 750 nm), in Near

Infrared (NIR) (750 − 1100 nm) and Mid Infrared (2 − 16 mm) spectrum. The
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Figure 1.2: Constituents of a guided missile

Figure 1.3: Missiles plume

Infrared region falls between the microwave and visible portions of the electro-

magnetic spectrum. It is further divided into two regions. The Near IR & Short

wave IR of the electromagnetic spectrum has wavelength range from 0.7 to 2.5

um. It has a frequency range from about 215 THz to 400 THz and lies close to the

red end of the visible light spectrum. Then comes Mid wave IR (3 to 5 um) and

Long wave IR (8 to 12 um) wavelengths as shown in Figure 1.4. Generally, Near

Infra-Red (NIR) is used for detection of missile plumes because it is the highest

energy content spectral radiation in IR band.

To the extent detection of a heat seeking missile is concerned, IR radiation from all
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Figure 1.4: Infrared spectrum within electromagnetic spectrum of waves

sources except rocket are considered as background clutter which will bring down

the recognition scopes of our missile detection system or even bog the emanations

of the rocket. Luckily, the vast majority of the IR energy discharged by the outer

layer of Earth lies into the window of 10 um, but the Sun’s radiation tops in

the visible band and reflected off the Earth’s surface will generally overwhelm

the locale above 3 um, henceforth leaving a window around 4 um accessible for

recognition of rockets. The actual sky reflects and dissipates a specific measure of

IR, however it’s intensity is lower than that of the Earth’s surface.

Figure 1.5 shows IR energy relative amounts discharged at various wavelengths

for varying temperatures. The prominent wavelengths for CO, CO2 and H2O and

their intensities can be observed in the plume of missile [3].

UV content is also available in missile plumes. The UV region is defined from

100 nm to 400 nm and for UV radiations atmosphere is transparent. Peak of

Visible radiations are between 400 nm to 700 nm. The UV band is assumed to be

composed of UVA (315− 400 nm), UVB (280− 315 nm) and UVC (100− 280 nm

including SBUV) as described in Figure 1.6.

SBUV region is generally defined from 240 to 280 nm. In this region solar radiation

is blocked by the Earth’s ozone layer so any radiation in this region is primarily

man-made. Once under the ozone layer, the atmosphere is transparent to wave-

lengths as short as 200 nm where oxygen absorption limits the transmission. All of
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Figure 1.5: Spectral radiance intensity vs wavelength for missile plume show-
ing “IR radiation characteristics of rocket exhaust plumes under varying motor

operating conditions” [3]

Figure 1.6: Constituents of UV spectral band UVC, UVB and UVA[4]

above described spectral components can be used for the detection of passive mis-

siles however depending on the amount of background emissions in that particular

wavelength spectrum, the false alarms will be different in each spectrum.

1.3 Gap Analysis

Guided surface-to-air missile (SAM) systems were developed during World War

II and became influential in the 1950s. In response, Radar warning receivers as
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Figure 1.7: Types of homing systems [4]

a counter measure against active missiles have proved their effectiveness by the

early 1970s which considerably improved the survival rate of aircraft against active

radiating threats. Figure1.7 shows the three types of homing missile systems,

Active or guided systems, passive or heat seeking systems and a third type is

semi-homing which is a hybrid of both.

The primary air-to-air heat seeking missiles showed up in mid 1950s. The innova-

tion permitted more compact missile designs and made it conceivable to foster Man

Portable Air Defense Systems (MANPADS) likewise named as shoulder-mounted

rockets, which became functional by the 1960s [4].

MANPADS are generally low-priced, very strong, simple to work and hard to

distinguish weapon framework. Infrastructure regularly connected with radar-

directed SAM arrangements is additionally not needed for MANPADS. This is

the motivation behind why these kind of weapons has been used by numerous

tactical powers all throughout the world. It is likewise a reasonable weapon for

terrorist organizations in light of its accessibility on the underground market at
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Figure 1.8: Swedish SAAB RBS 70 NG CREWPAD firing a BOLIDE “all-
target” SAM[5]

a moderately modest cost. Figure1.8 shows a swedish crewpad terminating a

BOLIDE all target MANPAD. Knowledge with respect to their accessibility in the

possession of ”non-state” associations, is unclear which makes it hard to expect

where and when to expect MANPADS assault [5].

At least 35 MANPADS hits on civilian aircraft have been recorded. Out of these,

twenty-four were shot down and killed about 500 people in the process.Figure 1.9

shows the Engagement results for SA-14 Model v C-130K and Hovering CH-47

with no countermeasures. This Figure is referred from [6] that explains the work

undertaken by the authors to demonstrate a second generation MANPAD, based

on the Russian SA-14, and assess the vulnerabilities of aircraft both with and

without flare countermeasures from these systems. The conclusions are the results

of over 11, 000 simulated firings against targets of varying aspects, velocities and

altitudes. It clearly shows the vulnerability of aircraft at an altitude as high as

4000 meters.
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Figure 1.9: Engagement results for SA-14 Model v C-130K and hovering CH-
47 with no countermeasures [6]

The 2nd and 3rd-generation MANPADS showed up in 1980s and because of cutting

edge seeker head technology, further developed rocket engines and aerodynamic

refinements, the effectiveness and viability of MANPADS was additionally im-

proved. Their performance worked on as far as deadly reach, least dispatch point,

moving potential and all aspect engagement angles. They additionally turned out

to be more safe towards Electronic Counter Measures (ECM). Airplane flying fast

or sufficiently high are generally protected, nonetheless, helicopters and fixed-wing

airplane that are taking off or landing are amazingly helpless. Be that as it may,

warriors fly additionally need security against passive missiles to get full functional

abilities. During Dog fights,jets need assurance against extremely short reach Air
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to Air Missiles (AAM) not more than 5− 10 km. During ground assault/support

missions and keeping in mind that working beneath 15 kft contenders need security

against SAMS and MANPADS.

Therefore, some kind of Protection system is necessary in aircraft against passive

heat seeking missiles including SAMS, Short range AAM and MANPADS. One

part of the protection system is a Missile Approach Warning System (MAWS),

which is used to warn the pilot about missiles heading toward the aircraft. If the

warning can be generated fast enough, countermeasures can be deployed and can

save the aircraft. MAWS is component of the avionics suite on only few military

aircraft till date because the technology is still limited with only few countries.

The AN/AAR-47 is one of the earliest Missile warning systems which was deployed

around early 90s. This is the scenario of engagement of missiles with the aircraft

around the world. If the warning is generated early then the aircraft can be safe

otherwise aircraft face severe danger. MAWS is component of the avionics suite

on only few military aircraft till date because the technology is still limited with

only few countries.

1.4 Problem Formulation

To deal with the problem of passive missiles threats, study has to be done regarding

various methods for identification of missiles and protecting aircraft from potential

threats. To achieve this, the following problems must be solved step-wise in the

course of this research:

1.4.1 Studying Most Effective Means of Passive Missiles

Identification

The first step involves the study of the spectrum of missiles heat signatures, types

of wavelengths available in heat signatures at various times of flight and advantages

and disadvantages related with identification of each spectral content. Based on
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our comparative study, we have to select the spectrum in which we can operate

and sense the passive missiles most effectively. We have to study optical sensor

requirements and constraints which are necessary for missile identification in that

selected spectral range.

1.4.2 Detecting Missiles

Given images from selected missile sensors, we need to detect the hotspots having

radiometric properties which are similar to the radiometric properties of missiles.

An experimental setup can be developed where an artificially created missile plume

may be created in front of man-made clutter which is called Emulated Data or

synthetic missile signatures may also be created utilizing GAN Models. Data Set

Generation is done in this phase and data labeling will also be done with the aim of

missile detection. Using this setup and labeled data, an initial deep learned model

shall be trained to detect and identify the missile plume. The main objective of

this phase shall be to train a machine learning model that is able to detect the

missile plume and de-clutter it from the background. The main challenge in this

project is to de-clutter the missile signature from the background clutter which is

called missile identification and raise an early warning. This will help the pilot of

the aircraft to deploy the available countermeasures to disrupt missile tracking.

1.4.3 Efficient Algorithms

Since the time from firing the missile to impact is only a few seconds, it is vital

that the system can operate in real time so that an approaching missile is detected

early enough to enable countermeasures. The real time constraint means that the

time complexity of all algorithms are of great importance. Figure 1.10 depicts a

MANPAD hitting a fighter jet near its take-off from the run way. MANPADS

are short reach weapons regularly up to 5km with the core of kill encompass

one to three kilometers. They consequently permit almost no edge for mistake to

successfully counter them as time to impact (TTI) on the objective at one kilometer
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Figure 1.10: Typical IR MANPAD engagement scenario [7]

Figure 1.11: Missile warning time definition [7]

is around three seconds. The TTI for targets at five kilometers is likewise generally

short, simply seven to somewhat more than eleven seconds separately.

Figure 1.11 shows the three time periods, detection time, declaration time and

warning time of MAWS involved between missile fire till missile hit. Once a missile

is fired towards the A/C, MAWS detects the threat and displays on the display

within short span of time may be a few milli-seconds. This time period is called

Detection Time . Once a target is detected, it is then tracked for its location,

angle of attack (AoA) and approach velocity. This is the point where advanced

processing is done by processor for removing the background clutter. Alarm is
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declared only when it is confirmed that the detected platform is not a clutter but an

approaching threat and time consumed is called Declaration Time. Therefore,

Warning is generated for the pilot to deploy his countermeasures like chaffs and

flares known as Warning Time. The time between missile firing and Missile Hit

is almost 5− 7 sec. Therefore, MAWS must be able to detect, track, and declare

a missile in less than a second; to provide enough warning time for directional IR

counter measure (DIRCM) or Electronic counter measure (ECM) deployment.



Chapter 2

Literature Review

2.1 Missile Detection Mechanisms

Passively guided infrared (IR) missiles can turn into a significant reason for air-

plane misfortune in fighting. Three distinct technologies have been utilized for dis-

covery of missile signatures for example frameworks dependent on Pulse-Doppler

radar; active detection and passive detection like Infrared sensors and Ultraviolet

sensor. One more progressed variation of Ultraviolet detection is based on SBUV

sensors [8]. Every innovation enjoys its benefits and hindrances which can be

summed up as follows:

2.1.1 Active Detection: Pulse-Doppler Radar

Like Radar warning receiver which is intended to distinguish threatening radars

and active guided missile threats for the airplane, a radar based detecting frame-

work can be installed on airplane which detects the passive missiles and Manpads

by noticing their cross sectional area through pulse Doppler strategy of recogni-

tion. Electromagnetic waves are transmitted and change in their frequency and

wavelength is measured to perceive the threat speed, direction and sometimes size.

This is called active detection.

13
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2.1.1.1 Advantages of Active Sensing

1. Distance and speed of the approaching missiles can be measured. It can

therefore define the time to impact (TTI) and upgrade the circumstance

apportioning of countermeasures [9].

2. This detection does not require motor of missiles to be working so it provides

a longer time frame for detection.

3. It is resistant to all types of weather conditions.

2.1.1.2 Disadvantages of Active Sensing

1. Aircraft’s presence may be disclosed with the emissions by the Active MAWS

and hence increase its susceptibility in delicate threat environments [10].

2. Negligible admonition time is given against small missiles with low radar

cross section like MANPADS and thus brings about late decoy dispensing.

3. It cannot calculate the direction precisely enough to direct Directional IR

Counter measure systems.

4. It is defenseless to false alarms brought about by other RF sources

5. If operating frequency is not selected vigilantly, it may interfere with ground

air traffic control radars.

6. Due to limitations in space on aircraft and large size of active system, it is

difficult to be integrated as compared to passive systems.

2.1.2 Passive Detection

Passive Missile Warning Systems detects the heat radiations discharged by the hot

flame of the missile instead of emitting radiations itself and detecting the reflecting

radiations from the threat. In case of passive detection, the challenge is separation

of missile heat radiations from the background clutter. The heat radiations are
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toned down in the atmosphere through several kilometers from the missile to the

detection sensors, where it has to compete against background clutter for proper

detection. Two spectral regions are considered for passive detection Infra-Red

band and the Ultra Violet (UV) band[11].

2.1.2.1 Infrared Sensing

All substances radiate IR energy, provided they are not at a temperature of ab-

solute zero (0°K). The hotter objects emit more energy and the peak wavelength

of emission decreases as T-1. IR energy has similar features as visible light for

example it travels in a straight line at speed of light and it is reflected or absorbed

upon hitting the surface of an object. In this regard, an IR based missile warn-

ing system is bound to have lots of detected objects which need to be scrutinized

before indicating any warning for the pilot [12].

Advantages of Infrared Sensing

Following are the list of advantages of using this method of sensing for missile

identification:

1. The IR radiations tends to pass through atmosphere better than that of UV

radiations under good weather conditions [2].

2. Longer detection ranges are offered by IR sensors at higher altitude where

there is no ground clutter.

3. At higher altitude , IR sensing can effectively detect the kinetic energy of

the missiles after motor burnout , but it might not detect it at low altitude

due to high IR background clutter [12].

4. IR detecting gives great AoA data to pointing a Directional IR Counter

Measure (DIRCM) and better navigation can be given with respect to decoy

dispensing direction and maneuvering for the pilot [13].
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Disadvantages of Infrared Sensing

Following are the list of disadvantages of using IR method of sensing:

1. Due to low IR transmission through liquid water and ice, all-weather op-

eration is not possible. Even a micrometer of water on the lens, or in the

atmosphere between the threat and the sensor, is enough to effectively blind

both MWIR and LWIR sensors.

2. It observes huge quantity of natural sun radiations and man-made IR clutter.

3. False alarm rate or probability of false warning is a big problem against

surface-to-air missiles, because of high IR background clutter radiating from

the surface of earth.

4. Vast computing power is required in IR sensing systems to deal with false

alarm problem which directly increases the system cost and system response

time [6].

5. IR detectors have extremely tight instantaneous fields of view to accomplish

sensible signal to target ratio. Large focal plane arrays (FPA) of the sensors

are needed to accomplish total 360° azimuth inclusion which is one more

variable to hoist the expense.

6. For low noise response, IR system needs cooled IR detectors which compli-

cates life cycle logistical support and again results in high cost of mainte-

nance.

7. New low IR emission rocket motors have been developed and they have

decreased detection ranges and less response time for pilot.

2.1.2.2 Ultraviolet Sensing

The study of UV detection technology was started in early 1950s. It is yet another

dual-use photoelectric detection technology after the advent of technologies of in-

frared and laser detection. UV radiations are coming from the sun and is likewise
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firmly consumed by the environment. Notwithstanding, attributable to the dis-

persing of the UV radiation from the sun, which isn’t unequivocally assimilated,

and the and the long path length through the climate (the dissipating medium),

the sky shows up at a somewhat uniform UV radiation. This implies that when

the sky is seen in the UV there is regularly uniform force , whether or not the sky

has mists present [14].

Aircraft, and other objects, can easily be discriminated against this ideal back-

ground. The wavelengths associated with UV are well defined, ranging from 100nm

upto 400nm. However, the regions that are useful for detection of aircraft are much

tighter [15].

Advantages of UV Sensing

Following are the list of advantages of using this method of sensing:

1. UV sensor works in UV spectral wavelength area and maximum of clutter

in nature and on earth surface is in IR range. UV based MAWS frameworks

subsequently have a much diminished False Alarm Rate when contrasted

with IR based frameworks [16].

2. In high IR clutter background environments, UV sensors have very good

probability of warning.

3. Since it is impervious to solar clutter, and hardly affected by liquid water

droplets like rain or moisture , all-weather operation is possible [17].

4. UV sensors typically have wide instantaneous field of view therefore large

FPAs are not necessary and cost is controlled.

5. It Provides very good Angle of Attack (AOA) information for accurate decoy

dispensing decision making, maneuvering and for directing DIRCMs.

6. Response time against nearby missile launches is fast.

7. As compared with pulse Doppler & IR technologies , it is a simpler system.



Literature Review 18

8. cooling circuits are not needed and due to low false alarm rate , only mod-

erate computing power is required.

Disadvantages of UV Sensing

Following are the list of disadvantages of using UV method of sensing:

1. To detect approaching missiles at Higher altitude , high effective burning

temperatures are necessary which are linked with solid fuel rocket motors

which becomes a constraint.

2. UV performance is better at lower altitudes like against surface-to-air mis-

siles however its performance degrades at higher altitudes where changes in

thickness of ozone layer interferes with UV propagation.

3. UV MAWS can derive Time to Impact in seconds from the rapid increase

in amplitude of the approaching missile’s signal but cannot provide actual

range information.

2.1.2.3 Solar Blind UV Sensing

Sunlight radiation includes UVA, UVB and some small portions of UVC contents.

It is known that the wavebands including the UVC and the Far UV is often referred

to as ‘solar blind’ because these wavelengths are strongly absorbed by atmospheric

elements in either bright sunny day or night.[18].

As last part of the 1970s, many nations have done the study of ultraviolet ra-

diations. In the last part of the 1990s, foreign analysts have worked on ”Solar

blind UV imaging” detectors, and afterward these have been bit by bit brought

to the market for some business employments. As of now, the main solar blind

sensors available in market incorporate ”Israel Ofil Company’s SuperB”, Luminar,

DayCor , MicROM and South Africa UViRCO’s CoroCAM series, etc, which are

displayed in Figure 2.1.
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Figure 2.1: Few renowned SBUV imaging cameras [19]

Advantages of SBUV Sensing

Following are the list of advantages of using this method of sensing:

1. Solar-blind detectors are intriguing for all applications where one needs to

recognize ultraviolet light while not being disturbed by conceivably a lot

more stronger visible light like corona identification in high power transmis-

sion lines. Corona release is consistently an indication of unwanted emissions

on high-voltage electrical mechanical assembly, incorporating those used in

electric rail route frameworks. Solar-blind detectors (UV) are successful in-

struments for corona investigation[9].

2. Since background sun radiations are not available in this spectrum, Target

Missile is detected against an almost zero background so algorithms for target

detection become much simple as shown in Figure 2.2.

3. False Alarm Rate is significantly low and the Probability of Detection is very

high.

4. SBUV sensing system is much more reliable because it is insensitive to Visi-

ble, Infrared and near UV light background clutter available in background.

5. The UV sensors by and large proposition offer short recognition ranges of

nearly 3 to 5 km in contrast with IR sensors which in some cases offer

10 − 15 km location ranges. Notwithstanding, this can undoubtedly be
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Figure 2.2: Comparison of missile plume in three different spectrum top(IR)
/ middle (UV) / bottom (SBUV)

disregarded on the grounds that missile approach warning system is conveyed

to secure airplane against MANPADS whose hit range isn’t more than 7 km

and against SAM hits during low flying heights of air stream for instance

during take-off or landing. For insurance against long reach missiles and

BVRs, airplane is outfitted with radars for active guided missiles.

Challenges of SBUV Sensing

Following are the few challenges involved in using SBUV sensing technology:

1. Cost-Intensive & Large Installation Space: Existing missile warning

systems running within the Solar blind ultraviolet (SBUV) a part of the

spectrum are quite pricey and require massive installation space. [13] Cur-

rently , maximum sun blind imaging is finished with very excessive gain
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Figure 2.3: Breakdown of image intensifier tube (IIT) [1]

that is performed via Image Intensifier Tubes (IIT) which contains either a

photo-cathode and ”micro-channel plate” aggregate or a UV-enhanced sili-

con image-diode along with a band pass filter. None of those alternatives is

hopeful in light of the truth that the ”photo-cathode” and ”micro-channel”

plate blend is a delicate vacuum tube requiring an incredibly high-voltage

power supply requiring a good sized space. Similarly silicon photo-diode is

not inherently solar based visually impaired and experiences extended size

and intricacy while added with filters as shown in Figure 2.3.

2. Complex Filter Structures: Semiconductor detectors manufactured from

substances like silicon (Si), silicon carbide (SiC) or gallium phosphide (GaP)

do not accomplish the crucial details as as far as sensitivity and dark current

to be considered for planning SBUV sensors [20]. Moreover, these materials

aren’t obviously solar blind, so complex filter structures are required for the

use of them in SBUV sensors.

3. Additional system Noise: For detecting weak solar-blind UV signals ,

large scale magnification is required that also magnifies the noise signal.
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Therefore, solar-blind ultraviolet images have poor contrast and low signal

to noise ratio. Hence efficient noise reduction techniques will be required in

SBUV missile detection systems [1].

4. Specialized UV lens: Transmittance of optical materials mostly decreases

with reduction in working wavelength; therefore, at SBUV spectral range

extremely specialized UV lens are needed to be incorporated in the system.

Ordinary lens is made of glass material which does not allow UV light to

pass through. UV lenses are made of specialized materials like Quartz and

Calcium Fluoride and are very costly due to specialized machining and man-

ufacturing requirements [21].

5. Non availability of Commercially Available SBUV detectors: In

the domain of sensor technology, commercially available CCD or CMOS sen-

sors are mostly Silicon (Si) based. Silicon can be easily excited by low-energy

photons of longer wavelengths that are enormous in a typical environment,

due to the low bandgap energy. Therefore, the sensor will become saturated

in bright sunny day unable to perform as SBUV sensor.

Technology Advancements in SBUV Technology

To defeat the difficulties clarified above, broad examination has been completed on

planning of effective optical filters, progressed SBUV sensor coatings and manu-

facture of wide band-gap semiconductors, films and 1-dimensional nano-structures

as options in contrast to traditional Si based locators. A portion of these improve-

ments are portrayed beneath:

1. UV-enhanced coating technology: Expensive low-pass phosphor coat-

ings are done on normal Silicon based CCD and CMOS sensors to limit

less-energy photons of longer wavelengths and allow only high energy pho-

tons of above 240 nm of wavelength to excite the sensors. These phosphor

coatings are done in complex vacuum conditions. The vacuum coating also

named as UV-enhanced technology is performed directly on the surface of
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any Si based conventional sensors. As a response to this coating, sensor’s

response on SBUV spectrum may be improved. However, these methods

require high costs and technical expertise.

2. High-Aluminum-Composition AlGaN-Based Semiconductor Ma-

terials: Technological advances in field of semiconductors and specifically

”high Aluminum composition AlGaN-based semiconductor” materials facil-

itated the manufacturing of visible blind pin photo-diode Focal Plane Array

cameras and intrinsically solar blind Focal Plane Array (FPA) cameras. Due

to the relatively large band gap, AlGaN is intrinsically blind to visible and

infrared light (”visible blind”). Variations in the composition also make it

possible to design the semiconductor material ”solar-blind”. Furthermore,

AlGaN detectors also have radiation resistance characteristics even at high

optical powers. The solarization that often occurs with external filters can

be avoided due to the integrated filter structure [21].

3. AlGaN-based detectors: AIGaN-based detectors were developed in a co-

operation of several Fraunhofer Institutes of Germany with different appli-

cations in mind like Water treatment, exhaust gas analysis, UV curing of

paints and adhesives, remote sensing, and detection of missiles. These are

specialized detectors and perform better than Si detectors for SBUV spec-

trum.

A scanning line scan camera based on AlGaN line sensors was developed at Fraun-

hofer IOSB. The spectral sensitivity of the camera can be selected by changing the

sensor used. Currently UVA, UVB and UVC detectors are available. The graph

in Figure 2.4 gives spectral properties of these detectors. The developed line scan

camera is shown in Figure 2.5 which shows the view from the laboratory window

in three spectral ranges. This image compares the identification of a UV source

in three different lights. First is in visible light then in UVA and then in Solar

blind UVC region. The background is completely eliminated in third case and the

UV source for example a missile can be clearly identified. After going through the

detailed analysis of the three different spectrum for analysis of missile plume, it
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Figure 2.4: Spectral sensitivity of detectors [21]

Table 2.1: Comparison of various Passive missile detection mechanisms

Type Advantages Disadvantages
Active System Long Detection range Prone to detection

Passive System (IR) Long detection range High False alarm rate
Passive System (UV) Low False Alarms Atmospheric attenuation

Passive System (SBUV) Extremely low False Alarms High cost

can be deduced that every technology has pros and cones of its own few of which

are discussed as shown in Table 2.1.

2.2 Previous Study & Work

After an IR-directed rocket is fired on and terminated, it is then independent.

The rocket inactively follows the objective until it hits it or until it burns out

in pursue. In this manner, it has a ”fire-and-forget” ability [17]. The trajectory

of the inactively directed IR rocket resembles a canine pursuit. The top of the

rocket is constantly coordinated in the direction of the objective. Be that as it
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Figure 2.5: Test scenario with three spectral ranges UVA, UVC were recorded
with a UV line scan camera, VIS as reference with a common CCD camera [1]

may, when the objective relocates to another position, the moving of the rocket

direction doesn’t occur quickly [7].

The danger of man portable latent infrared guided surface-to-air rockets has

prompted the advancement of unguided rockets warning sensors which are uti-

lized to trigger a caution when an airborne platform is locked in by a rocket.

Unguided rockets cautioning sensors includes a wide field-of-view (FOV) UV or

infrared indicators, detecting for rockets crest emanation [22].

2.2.1 Atmospheric Scattering of UV

Solar radiations are absorbed by stratospheric and tropospheric ozone and due to

this the area visible from the earth atmosphere is hundred percent dark in the

mid UV region. This darkness or black background with no UV emissions from

sun, permits us to detect a missile plume UV emissions as a point source against a

dark background, which appears with high contrast, especially in the “solar blind”

band located approximately between 240 to 290 nm.

However, due to ozone absorption between the path in line of plume and the sensor

and by atmospheric scattering, the detection range in UV is limited. Scattering
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occurs due to the molecular and aerosols particles and it gives rise to spreading

of the plume image recorded by the UV sensor, and creates a radiance field in

the surroundings of the point-like source [23]. With the help of UV and SBUV

sensing, this scattering contribution is easily detected due to the low background

and the high sensitivity of detectors [22].

2.2.2 UV Plume Signature Modeling

Detection Models need to guess about emissions of the missiles, propagation

through the atmosphere and optical signals detection for the analysis of UV de-

tection performances in certain conditions. The calculation of missile plume size

is done in two steps. First of all, aero-thermo-chemical properties of the plume

are obtained by solving flow-field equations and then, impression of the radiance

or dependence in terms of angular distribution of the plume’s intensity is acquired

through the radiative transfer equation (RTE).

Majority of the solid propellant rockets use aluminum particles which are part

of the fuel for achieving high intensity propulsion, and when this fuel burns the

plume contains particles of aluminum in the micron sizes. Temperature increase

is achieved with the after burning of intermediate products like H2 and CO with

the help of external air and other elements like O and OH are also produced as

by products. These particles are to be blamed for UV emissions through specific

chemical reactions known as chemi-luminescence reactions [24].

2.2.3 Passive IR Airborne Threat Warning

Rocket and airplane danger cautioning is a troublesome issue for IR sensor frame-

works in view of reconnaissance cross sectional area, of danger elements and gener-

ally bad ratio of signal to clutter that characterize air engagement scenarios. De-

ceiving moves and arrangement of counter measures should happen quickly after

dispatch of a threatening rocket, here and there in practically no time. This out-

comes in a prerequisite of almost nonstop reconnaissance over huge hunt volumes,
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which directs utilization of exceptionally productive sign handling calculations to

deal with high constant information flow, and furthermore 2-D Infra Red gazing

clusters rather than precisely filtered straight exhibits, that shows in-admissibly

long return to times.

In order to perform continuous wide area coverage (e.g., 90° x 360°) and significant

spatial resolution, unfortunately the current latest moving array technology is still

not enough. In order to provide wide area coverage, pixel sizes in modern IR

arrays for airborne threat warning systems will be of thousands of milli-radians,

which is too coarse to resolve potential threats at desired detection ranges. At

such distances an aircraft or incoming missile will make only a little fraction of a

pixel’s solid angle footprint. Even a high energy target might make a small impact

to the pixel’s overall IR signature under such conditions, therefore contributing in

very less ration of target versus clutter [23]

Broad efforts have been coordinated towards improvement of single-frame, single-

band location calculations for low difference point targets in high clutter back-

grounds. The best in class in this space is that current single-frame,single-band

calculations perform at or close to as far as possible as controlled by focus to mess

proportions and by spatial properties (measurements) of messiness.

In this manner, while computational and structure factor contrasts might incline

toward certain calculations over others for use in size, weight or potentially power

restricted applications, for example, fighter airplane, it isn’t reasonable that ma-

jor discovery execution acquires will get from additional improvement of single-

examine, single-band calculations. Significant upgrades in detached IR airborne

danger cautioning will come about simply.

2.2.4 Time to Impact Calculation

The capability of determining the speed and the range of the approaching threat is

one of the general properties of the active systems such as pulse-Doppler based mis-

sile warning systems . However, mostly used missile warning systems are passive
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systems and the ranging capability is not a general property for these systems. To

add this property to the passive missile warning systems, some specific parameters

have to be obtained about the objects whose distance is to be measured and some

additional specific studies needs to be done. There are different algorithms which

are proposed in open literature to find the distance of objects to the measurement

systems or sensors. In these algorithms, distance finding studies are carried out

using the area, intensity, and position change of the objects whose distance is to

be estimated.

The temporal characteristics of the area, radiation and movement of the guided

missiles are most broad highlights utilized by the passive missile warning systems.

On the off chance that the acquired element attributes for a recognized article is

like the element qualities of a guided missile warning systems which is drawing

closer to the aircraft , the system gives an admonition. The remaining objects

which do not have feature characteristics of a guided missile are set as false alarm

sources [9].

2.2.5 Detection of Fast Moving Objects

The thought of a Fast Moving Object (FMO), for example an object that moves

over a distance surpassing its size inside the exposure time, is presented in [26].

FMOs may, and regularly do, pivot with high precise speed. FMOs are excep-

tionally normal in sports recordings, yet are not uncommon somewhere else. In

a solitary casing, such items are frequently scarcely apparent and show up as

hazy streaks. The technique proposed in [26] comprises of three distinct algo-

rithms, which structure a productive restriction pipeline that works effectively in

an expansive scope of conditions. It is shown that it is feasible to recuperate the

presence of the item and its pivot of turn, regardless of its obscured appearance.

The proposed technique is assessed on a new explained data set. The outcomes

show that current trackers are lacking for the issue of FMO confinement and an-

other methodology is required. Two uses of limitation, transient super resolution

and highlighting, are introduced in [27].
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Fast moving objects are related with a de-blurring and matting issue, likewise

called de-blatting. The proposed technique in [26] recognizes Fast moving objects

as a shortened distance capacity to the direction by learning from synthetic data.

For the sharp appearance assessment and precise direction assessment, a matting

and fitting network that appraises the obscured appearance without foundation,

trailed by an energy minimization based de-blurring is proposed.

It is depicted by this work that a shrewd mix of stereo vision and motion analysis

can be used for a robust and fast detection of significant moving items . This

methodology, known as 6 Dimensions Vision, gauges area and pixels movement at

the same time which on a pixel level , empowers the discovery of moving items.

Utilizing a Kalman channel joined to every followed pixel, the calculation prolif-

erates the existing understanding for the upcoming picture [28].
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System Overview

3.1 Introduction

MAWS detection system consists of three subsystems each solving their own part

of the problem without knowing very much about the other subsystems. The

subsystems are connected such that the output from one subsystem can be the

input of another subsystem as illustrated in Figure 3.1. Now each of these sub-

systems will be explained one by one.

Figure 3.1: Development methodology

30
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Figure 3.2: (a) Solar radiation spectrum of sun containing UV, visible, irra-
diation as clutter for missile plume but majority clutter is visible in IR band
(b) UVA, UVB and UVC wavebands in sunlight along with exposure intensities

showing maximum content of UVA

3.2 Selection of Spectrum

Three different technologies have been used for detection of missile signatures

i.e. Pulse-Doppler radar based detection, Infrared sensors based sensing, and

systems based on Ultraviolet sensor. Another advanced variant of Ultraviolet

sensing is SBUV sensors. Every option of technology comes with advantages and

disadvantages.

Sunlight radiation includes UVA, UVB and some small portions of UVC contents.

The UVC region is often known as ‘Solar blind’. It is observed that the wavebands

including the UVC and the Far UV produce little background radiation as these

wavelengths are greatly absorbed due to atmospheric particles in either day or

night.

All radiations in solar spectrum act as clutter for missile plume but we can see

majority clutter is in IR band. As shown in Figure 3.2(a) UVA, UVB and UVC

wavebands in sunlight along with exposure intensities showing maximum content

of UVA . SBUV region is generally defined from 250 to 280 nm indicated as red

box on 3.2(b). In this region solar radiation is blocked by the Earth’s ozone layer

and due to this the area visible from the earth atmosphere is hundred percent dark
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. This darkness or black background with no UV emissions from sun , permits

us to detect a missile plume UV emissions as a point source. In this region, any

radiation is most probably made by man like missile plumes , air jet exhaust or

corona discharge. Therefore SBUV spectrum deems most appropriate for detection

of missile plume with lowest possible false alarms.

3.3 Data Synthesis

There are multiple online data sets available on public platforms which are used

to build a convolution neural network (CNN) image detector and classifier. Un-

fortunately my data set is unique and classified so it is not available on any public

platform. In an ideal situation, a Solar Blind UV camera is required to record

videos of missiles. Since such a camera is not available currently ,it was decided to

move on with available missile videos on public forums. Initially some YouTube

videos of missile plumes were downloaded as shown in Figure 3.3, but these are

available in Visual RGB camera with all background clutter and no UV details of

plume.

Figure 3.3: Missile plume videos on public forums

There is one other limitation in the publicly available missile videos. These videos

are made in 3rd person perspective. No video could be found in which the camera

was mounted on the aircraft being shot. Thus such videos do not provide desired

parameters needed.
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3.4 Object Detection

Once the required data has been gathered, the next step is Object Detection. In

the present study, CNN deep learned model for detection and classification has

been used. Numerous algorithms for deep learning are being utilized for object

detection world wide like RCNN’s: Fast RCNN, Faster RCNN, YOLO, Mask

RCNN etc. YOLO (you only look once) v5 framework of CNN has been selected,

which is an advanced, efficient and cutting edge technology for detection of objects

in real time. This CNNmodel has peculiar characteristics of fast speed and efficient

detection capabilities.

3.5 Object Classification

Moving Object detection with camera fixed on aerial platform (aircraft) requires

post processing or in other words it is also called 2D tracking. After an object

is detected through CNN model as a missile based on its parameters, then post

processing with few other tracking algorithms has been performed to classify the

detected missile as approaching or non-approaching missile.

Furthermore to differentiate between a missile and another flying aircraft is also

part of this object classification step involved in complete development scheme.
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Data Synthesis : Simulations and

Plume Modeling

This chapter presents a synthetic model to simulate Solar blind UV characteristics

of missile plume, designed for training AI detection model. This methodology is

adopted due to the non-availability of SBUV camera and difficulty in firing actual

missiles for the training purposes.

4.1 Data Gathering

There are multiple online data-sets available on public platforms which are used

to build a CNN image classifier. Unfortunately data-set needed in this study is

unique and classified so it is not available on any public platform. In an ideal

situation, a Solar Blind UV camera is required to record UV videos of missiles.

Since such a camera is not available currently, it was decided to move on with

available missile videos on public forums. Initially some YouTube videos of missile

plumes were downloaded, but these are available in Visual RGB camera videos

with all background clutter and no UV details of plume as shown in Figure 4.1.

Missile plume is visible but a lot of masking and processing will be required to

remove the background from these videos.
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Figure 4.1: SAMS plume firing in visual spectrum

4.2 Rendering of Desired SBUV Scenarios

Therefore a specialized 3D rendering software was used to generate the desired

scenario animations. Once few UV videos of missile are simulated, synthetic 2D

images similar to the video can also be generated by utilizing GAN models. Since

4 or 6 MAWS sensors are mounted on aircraft in real time environment and per-

spective/field of view of each sensor is different. Therefore, camera position was

also changed during simulations to see multiple perspectives.

Figure 4.2: Images rendered in blender software [16]

The size of the data set synthesized for this study is almost 1500 images / frames

which is divided into training and validation data in a percentage of 60 and 40

percent respectively.
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4.2.1 Case 1: Receding Missile

If a missile is fired by subject aircraft or if a missile is fired by a friendly jet flying

in parallel or in formation flying, the missile will be going away from aircraft and

hence image of missile plume will decrease in size in subsequent frames as seen by

MAWS sensors as shown in Figure 4.3.

Figure 4.3: Decreasing plume size (frame 1 showing a large plume size (left)
and frame 15 showing a small plume size (right))

4.2.2 Case 2: Approaching Missile

In this case a missile targets the aircraft from its tail side. The sensor is placed on

the tail so it sees an enlarging ring of missile plume as it approaches towards the

aircraft. Figure 4.4 shows the SBUV image of approaching missile where smaller

plume is visible in initial frames however Larger plume ring is visible in later

frames. Center area of plume is eluded by missile body which makes it look like a

ring instead of circle.

Figure 4.4: Increasing size of plume(frame 1 showing a small plume size (left)
and frame 15 showing a Large plume (right) eluded by missile body from the

center)
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Figure 4.5: Aircraft flying over high power electric transmission lines(left
window showing rendering environment display and right showing SBUV visual

output)

4.2.3 Case 3: Aircraft Flying over High Power Electric

Transmission Lines

Shown in Figure 4.5 is a jet flying on top of high power transmission lines. There

is corona discharge on such high power lines whose spectral emission band is same

as missile plume i.e 240 to 280 nm. It is invisible to naked eye and is visible with

UV and SBUV sensors.

Therefore it is a major cause of background clutter for our application. This

appears as a moving object due to the relative motion between aircraft and the

wires. The only available option to get rid of this clutter will be to visualize its

actual shape , pattern and train the CNN model on synthesized corona patterns

/ class. To achieve this object this simulation will be very helpful.

4.2.4 Case 4: Formation Flying

The scenario shown in Figure 4.6 is the formation flying and the missile chases

both the aircraft initially. Camera was placed on one aircraft tail. Missile suddenly

changes its trajectory and it follows the other aircraft instead of the subject jet.

This scenario is rendered for training the system , to judge the case in which there

is a missile detected by the system but it is not coming towards subject aircraft

and therefore has not to be declared as a threat.
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Figure 4.6: Missile chasing a parallel flying aircraft

This scenario is of great significance , because in this case , the detection CNN

model can be easily fooled due to the increasing intensity, size and approaching

coordinates of the plume however we can train the system only not to be fooled by

this by synthesizing this scenario and extracting good quantity of training frames

through this simulation.

4.2.5 Case 5: Missile Chasing Another Aircraft Flying in

a Different Direction

In this particular scenario shown in Figure 4.7, MAWS sensor on subject aircraft is

detecting a passive missile being fired towards another aircraft which is not flying

parallel, instead flying in some other direction.

This scenario is created to train the system, to clearly understand which missile

is an approaching threat and which is not. Furthermore, the tail plume of subject

aircraft and tail plume of other jet also have to be excluded as clutter, so this

synthesized scenario will also help the system for this clutter rejection.

All the above mentioned scenarios are key scenarios which will aid the detection

system to be trained for majority of the possible types of encounters with passive
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Figure 4.7: Missile chasing another aircraft flying in a different direction

missiles in real time environment. This simulation and modeling approach has

been adopted due to the scarcity of resources like SBUV hardware, missile firing

freedom efforts have been made while rendering these models to stay as close to

reality as possible.



Chapter 5

Object Detection & Classification

5.1 Introduction

Detecting fast moving objects is an important and challenging problem. It has

high applicability for tracking UAV (unmanned aerial vehicles), missiles called

Object of Interest (ObI) in this study and other objects, especially when trying to

predict the approach and possible collision.

As described in previous Chapter, In case of aerial platforms use of UV/Solar-

blind (Ultra Violet) sensors are used to acquire UV signatures of the surrounding.

Utilizing this spectrum first of all, objects visible in this spectrum are detected in

first stage called object detection. In later stage, classes are made for the detected

objects for de-cluttering and afterwards 2d tracking is done to eliminate all non-

stationary clutter from the moving threats and discriminate the non-threatening

cases from approaching missile threats. Same is shown in Figure 5.1.

5.2 Object Detection

The primary challenge is to de-clutter missile signature from background which

contains some other objects in same solar blind UV domain and raise an early
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Figure 5.1: Object Detection and Classification

warning, increasing the possibility of defensive maneuver and/or deployment of

the available countermeasures to disrupt the object’s trajectory.

Once the required data has been gathered, the next step is Object Detection

algorithm. In my research, detection model is based on deep learned algorithms.

Conventionally many other approaches like Hidden Marcov Model have been used

for this objective [2] but deep learned models offer some added advantages of

efficiency and precision in detection which is difficult to achieve otherwise.

For object detection , numerous deep learning algorithms are available like RCNN’s,

Fast RCN, Faster RCNN, YOLO, Mask RCNN etc. YOLOv5 architecture is used

in current study. Filters a.k.a. kernels are the building blocks of Convolutional

Neural Networks (CNNs) [29]. Using the convolution operation, Kernels are uti-

lized to derive the relevant features of the input image [19]. After object is detected

as a missile based on its parameters , then post processing with few other tracking

algorithms will be done which will be explained in next chapter [30].
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5.2.1 Object Annotation

In the realm of deep learning , Object detection combines two tasks:

1. Image Classification

2. Object Localization

The image classification task requires to give object classes in an image thus clas-

sification can be for one or more objects. Object localization on the other hand,

requires to find both the object class and bounding boxes i.e; location where class

is detected for images. These two tasks as a whole are also called object annotation

or data tagging or labeling as shown in Figure 5.2.

Figure 5.2: Image classification, classification plus localization and object
detection [31]

5.2.1.1 Data Labeling

All the ”supervised learning based models” require a ground truth i.e. a ”Labeled

Dataset” during their training phase. In the context of Deep Learning, Data label-

ing or Data Annotation is the procedure that involves detecting and tagging data

samples. The process is manual and it is usually performed with the assistance

of software[19]. For example, if it is desired to develop a system that can detect

planes in an image, the deep learning-based model shall be trained over a data-set
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with video frames along with the details (coordinates) of a bounding box around

the location of the plane in each frame as illustrated in the Figure 5.3. If there are

multiple kinds of objects to be identified a class label also needs to be attached

to each object. In the case of object detection, the dataset consists of the original

image and 5 values are required representing the object class and the coordinates

of the bounding box in which the object is located. These values are :([class xmin

ymin xmax ymax] or [class xmin ymin width height]).

Figure 5.3: Labelled dataset or ground truth required by supervised learning
models to detect similar unlabeled objects [31]

5.2.1.2 Labeling Tools Analyzed for MAWS

Data gathering is a complex task, requiring a reasonable number of annotators.

Multiple procedures like getting porting of data tagged from multiple annotators

are incorporated to maintain the quality of the tagging. The following is a list of

tools evaluated for this project:

1. Computer Vision Ground Truth Labeler in MATLAB [31]

2. Intel’s Computer Vision Annotation Tool (CVAT) - (open-source tool) [29][32]

3. LabelImg (open-source tool)

4. Microsoft’s Visual Object Tracking Tool (VOTT)
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5. MIT CSAIL’s LabelMe (open-source tool)

6. Supervisely’s Video/Image Labeling Tool

7. DarkLabel (for Windows only)

8. SuperAnnotate (paid)

5.2.1.3 Data Classes for MAWS

I have defined following three classes ;

1. Ring plume

2. Plume

3. Corona

These classes are defined because of differences in their features and shape.

Figure 5.4: Three classes defined for data annotation

The tools selected for this project include Computer Vision Ground Truth Labeler

in MATLAB , Labelme (open-source tool) which comes with Yolo v5 model format

and DarkLabel as well.

Based on the defined classes, the data-set was labeled and then numerous training

frames have been created through the data annotation process. These training

frames include the information regarding class, (x , y) coordinates, width and

height information regarding the detected object.
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Figure 5.5: Multiple training frames annotated for training the model

5.2.2 Convolution Neural Network for Detection

A Convolution neural network (ConvNet/CNN) is a deep learning algorithm whose

input is an image. Based on some learn able weights and biases values to various

aspects/parameters in the image, it assigns importance and is able to differentiate

one from the other.

CNN learns the filters routinely without bringing it up separately. These filters

assist in extracting the right and relevant features from the input records. CNN

additionally follows the idea of parameter sharing. A single filter is carried out

across exceptional parts of an input to provide a characteristic map [29].Core

building block of a Convolution network is the Conv layer that does most of the

computational heavy lifting.

The convolutional Layer and the Pooling Layer, make up the i-th layer of a convolu-

tional Neural Network. Depending on the complexities in the images, the number

of such layers can be increased for capturing low-levels details even further, but

at the cost of more computational power. In this study 9 layered convolutional



Object Detection & Classification 46

Figure 5.6: Convolution neural network architecture

network has been used amongst which 4 are the convolutional layers, 3 are the

pooling layers and 2 layers are kept for flattening the information.

The element involved in carrying out the convolution operation in the first part

of a convolutional Layer is called the Kernel/Filter, K, represented in the color

yellow. In this study , K is selected as a 3x3x1 matrix.

Stride Length is kept as 1 (Non-Strided), therefore Kernel shifts 9 times for per-

forming a matrix multiplication operation between K and the portion P of the

image over which the kernel is hovering.

5.2.3 YOLOv5 Framework

In this study , YOLOv5 framework of convolutional neural networks has been

utilized keeping in view the perspective of real time application development.

YOLO is a synonym for ’You only look once’. It is an object detection algorithm

which divides images into a grid system. Each cell in the grid is responsible for

detecting objects within itself [33].

YOLO is one of the most famous object detection algorithms due to its speed and

accuracy. Shortly after the release of YOLOv4 Glenn Jocher introduced YOLOv5

using the Pytorch framework. YOLOv5 is one of the best available models for
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Figure 5.7: Kernel size and its function in convolution [33]

Object Detection at the moment [34]. It this study , time efficiency of the detection

algorithm was a major concern which is the main reason for selection of this

framework.

Figure 5.8: YOLOv5 architecture [33]

Object Detector generally have a backbone for pre-training and a head to predict

classes and bounding boxes. The Backbones can be running on GPU or CPU

platforms. The Head can be either one-stage (e.g., YOLO, SSD, RetinaNet) for

prediction of dense properties or two-stage prediction(e.g., Faster R-CNN ) for the
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less dense prediction object detector. Recent Object detectors have some layers

(Neck) to collect feature maps, and it is between the backbone and the Head. In

YOLOv4, CSP Darknet53 is used as a backbone and SPP block for increasing the

receptive field, which separates the significant features, and there is no reduction

of the network operation speed. PAN is used for parameter aggregation from

different backbone levels. YOLOv3 (anchor-based) head is used for YOLOv4.

YOLOv4 introduced new methods of data augmentation like Mosaic and Self-

Adversarial Training (SAT). Mosaic is meant to mix four training images. Self-

Adversarial Training operates in two forward and backward stages. In the 1st

stage, the network alters the only image instead of the weights. In the second

stage, the network is trained to detect an object on the modified image. YOLOv5

almost resembles YOLOv4 with some of the following differences:

1. YOLOv4 is released in the Darknet framework, which is written in C how-

ever, YOLOv5 is based on the PyTorch framework.

2. YOLOv4 uses .cfg for configuration whereas YOLOv5 uses .yaml file for

configuration.

5.3 Classification & Tracking

Once the object is detected with the help of CNN deep learned models , the next

challenge is to classify it as an approaching missile or a random fire, or to differ-

entiate between a missile plume and another aircraft. This type of classification

cannot be achieved alone with CNN based object detection.

This comes under the paraphernalia of Moving Object detection which requires

Post Processing or 2D Tracking. Moving object detection is defined as identi-

fication of the physical motion of an object within a certain space or area.[35].

Numerous procedures are used to examine if any moving object is detected by

comparing Multiple consecutive frames from a video . The motion of moving ob-

jects may be tracked and can be analyzed later , by segmentation among moving
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objects and stationary area [36]. To accomplish this, a video is considered as a de-

sign based upon single frames, moving article location is to observe the closer view

moving target(s), either in every video outline or just when the moving objective

show the primary appearance in the video [37].

5.3.1 Moving Object Classification Techniques

Traditional moving object tracking and classification methods can be broadly di-

vided into four major approaches:

1. Background subtraction

2. Frame differencing

3. Temporal Differencing

4. Optical Flow

All these methods have been extensively utilized for numerous types of utilities

for example; video surveillance, recognition of terrorist activity, monitoring of

roads condition, flight safety on airport, marine border monitoring etc. [38]. For

this specific case of airborne application where the camera is mounted on a fast

flying object and it has to detect other fast moving objects like missiles, all these

approaches have been studied one by one and most appropriate approach has been

seleted based on efficiency and reliability parameters citephansen2021novel.

5.3.1.1 Background Subtraction

It is popular and broadly utilized method for developing a foreground mask or a

binary picture which contains the pixels indicating a place with moving articles

in the scene with the help of static cameras. This methodology can’t be utilized

in this specific application because the camera will be mounted on flying aircraft

instead of a static object.
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5.3.1.2 Frame Differencing

Frame differencing method compares two successive frames to detect moving tar-

gets unlike image subtraction method where second and afterwards images are

subtracted [10].

5.3.1.3 Temporal Differencing

Pixel-wise difference method with two or three consecutive frames is used in tem-

poral differencing method and the moving object is identified [36].

5.3.1.4 Optical Flow or Optic Flow

A certain pattern of apparent motion of objects, surfaces, and edges is created in a

visual imagery , due to the relative motion between an observer and a scene. This

is known as optical flow and is used for object detection. It can also be defined

as the distribution of apparent velocities of motion of brightness in an image [31],

[39].

5.3.2 Tracking Algorithms

Object Trackers have been in active development in OpenCV for tracking of the

detected objects. Few popular algorithms are explained below:

5.3.2.1 AdaBoost Algorithm

Tracking is considered as a binary classification problem in this algorithm and it is

the easiest to implement algorithm with openCV. First of all, the linear combina-

tion of R, G, and B with integer coefficients is utilized to generate the candidate

features [40].Features are later on selected for the design of weak classifiers ac-

cording to the two-class variance ratio. Afterwards, a strong classifier is built on
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the weak classifiers. In this study , initially all the tracking is performed with this

tracking algorithm. Later on, for specific cases like muti object tracking and very

fast speed videos other algorithms like CSRT and KEF were utilized.

5.3.2.2 Kalman Filtering

A very famous signal processing algorithm utilized to predict the location of a

moving object based on initial motion information. One of the early applications

of this algorithm was in missile guidance and the on-board computer that guided

the descent of the Apollo 11 lunar module to the moon had a Kalman filter [41].

Therefore it is studied in detail in this study for implementation.

5.3.2.3 CSRT Tracker

In situations where a fast object detector is needed, it makes sense to detect

multiple objects in each frame and then run a tracking algorithm that identifies

which rectangle in one frame corresponds to a rectangle in the next frame. For

such requirements some other algos are utilized one example is CSRT algorithem

[42].

In CSRT slgo , the discriminating Correlation Filter with Channel and Spatial

Reliability (DCF-CSR)are used. Spatial reliability map for adjusting the filter

support to the part of the selected region from the frame for tracking is utilized.

This ensures enlarging and localization of the selected region and improved track-

ing of the non-rectangular regions or objects. It uses only 2 standard features

(HoGs and Colornames). In this study , for multi target tracking this CSRT

tracker has been utilized.

5.3.3 Implemented Tracking & Classification Technique

Frame differencing and temporal differencing methods as explained above are uti-

lized in present work for post processing and two checks were implemented on the
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Figure 5.9: Object tracking and classification technique

consecutive frames. First of all , the frames are recorded in terms of area of the

plume and after every 10 frames, the area of plume in each consecutive frame is

compared with the area of plume in previous one. On basis of increase in area,

the detected target is classified as approaching threat missile or receding missile.as

shown in Figure 5.9.

Furthermore, the rate of change of area is also calculated. This gives an idea about

the moving object speed. Since the speed of missile is much higher than any other

flying aircraft in surroundings, therefore this check will help us to differentiate be-

tween the missile and other aircraft. This is done with implementation of Kalman

Filter algorithm.

For real time tracking requirement of current problem statement , the constraints

like low computational time, low memory requirement, minimal hardware are also

kept in mind.

AdaBoost tracking algorithm for fast moving object detection has been studied

and utilized in my work. AdaBoost algorithm, abbreviated for Adaptive Boosting,

which is a technique used in machine learning as a grouping methodology. It is

known as Adaptive Boosting because the weights are re-assigned to every event

and wrongly classified instances are assigned with higher weights. AdaBoost is
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actually used to boost the performance and efficiency of any machine learning

algorithm. It is suitable for weak learners or less data-set trained models as in my

case the training data is limited. Decision trees with one level are the most suited

and therefore most common algorithm used with AdaBoost and same is utilized

in this study.

CSRT tracker based on mean shift techniques which is very good for high speed

moving objects tracking has also been implemented [37]. All these techniques have

been studied in detail to implement this code utilizing PyCharm and other open

CV built in libraries.



Chapter 6

Results & Discussion

6.1 Introduction

The test results presented in this chapter deal with complete MAWS system which

comprises of detecter , classifier and tracker. Initially performance of detector

system is explained which is based on results of YOLOv5 model. Detector system

will give objects detected in our desired spectrum with the pre-decided labels and

classes. The outputs of this system are then given to the classifier portion and

then to the tracker as explained in Section 5.3.3.

The performance of classifier is dependent on detector however the performance of

2D tracker is independent from the detector and its output is also different, thus

the performance of tracker is explained separately.

6.2 Object Detection Model Performance

The performance of object detection model is measured through certain parame-

ters. These parameters are widely used in computer vision and AI fields to examine

the performance of algorithms before implementation of hardware. The details of

these performance parameters are explained below:
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Figure 6.1: Intersection over union [20]

6.2.1 Performance Parameters Indicators

1. Intersection over union (IOU)

2. Precision and Recall Matrices

3. Mean Average Precision(mAP)

4. Performance Confidence Curve

Intersection over Union (IoU) estimates intersection over the union of two

overlapping boxes; the bounding box for the ground truth and the bounding box for

the predicted object. An IoU of 1 shows that the ground truth and predicted boxes

overlap completely (100 percent) accurate detection. Generally IoU threshold

value is set upto 0.5. It can also be set to 0.75, 0.9 or 0.95 etc depending on the

refinement of training data as shown in Figure 6.1. With the help of this data,

percentage of loss of object, percentage of loss of class is plotted by increasing the

number of Epoches (training cycles) gradually as shown in Figure 6.2.
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On top is the training data graph and on bottom is the validation data graph.

We can see and compare that both the training and validation data graphs can be

related closely to one another. This depicts that the loss of detection of the class

and loss of detection of the object reduces as the number of training cycles of the

model are increased and finally when we do the training is done for 100 cycles the

loss percentage is as low as 2 percent which is quite a good result for any CNN

model.

Figure 6.2: Class loss and object loss percentages graphs

After setting the value of IoU, True Positive (TP),False negative (FN) and False

positive (FP) cases are identified and calculated through these formulas.
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Figure 6.3: Precision and Recall matrices values and mean avg precision
graphs

Mean Average Precision(mAP) as mentioned in above equation 6.3, using 11

point interpolation technique is also calculated.

6.3 show the plotted Precision and recall graphs on top and Mean Avg Precision

graphs on bottom. As the number of epoches (training cycle) plotted on x-axis

are increasing the percentage value of recall and precision is also increasing and it
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Figure 6.4: Precision Vs Recall curve

reaches as high as 85 to 90 percent. This is the characteristic of a good detection

model.

Precision and Recall are two contradicting quantities. Higher value of one neg-

atively effects the value of other. Figure 6.4 shows ”Precision Vs Recall” (PR)

graph of this study which is decreasing and trying to approach unity, as seen in

above referred figure. Overall Performance curve of the detection system is also

plotted in 6.5 which is showing increasing precision w.r.t. confidence level for all

the three classes decided in last chapter

6.3 Tracking & Classification Results

Tracking and classification is done with the help of two separate algorithms.

6.3.1 2D Tracker Performance

With the help of recorded values of coordinates in detector system, the area of the

plume is calculated for each frame. This calculated area is then compared after
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Figure 6.5: Performance curve

every ten frames in 2d tracking algorithm. Based on this calculation, the direction

of the threat is determined as approaching or receding threat.

The area calculation and decision on direction of the threat is done through two

different methods. One is the conventional technique of data storing in arrays and

other is based on Kalman Filter estimation algorithm.

Both the approaches have been implemented and results are almost similar and

accurate through both methods. As shown in Figures 6.6, 6.9 and 6.8, the devel-

oped algorithm is able to classify the directions of the threats with the help of its

Area information.

6.3.2 Classifier Performance

Another calculation is done based on rate of change of area. This provides a good

approximation for the approach velocity of the threat but does not provide the

exact velocity value. This calculation has helped to classify the approaching threat

as a missile or another aircraft since the approach speed is different for both.
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Figure 6.6: Area calculation for plume size

Figure 6.7: Circular plume area calculation for classifying it as approaching
or receding missile
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Figure 6.8: Decreasing plume area calculated with the tracking

Figure 6.9: Approaching missile plume



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Passive Missile warning systems are one of the most crucial Electronic Support

(ES) systems of an Electronic Warfare (EW) suit on aerial platforms. These

systems are used to warn the pilot and clue the Electronic counter measure(ECM)

systems such as Directed counter measures (DIRCM) on the platform against the

attacking guided missile.

Passive missile detection utilizing SBUV sensors has intrinsic advantages over old

conventional means of detection. UV detection is better against surface-to-air

missiles and MANPADS which are the primary threats faced by most aircraft.

The realms of deep learned supervised learning , Machine learning , conventional

2D tracking algorithms for moving object detection have been utilized in conjunc-

tion in this study to achieve desired results. The detection and classification based

on these approaches has provided efficient and reliable results which was the main

aim of this study. In future this study can be extended to deduce other essen-

tial parameters like approach velocity and time to impact of the threat and the

developed system can prove to be a wholesome package for the EW suite of any

modern aircraft.
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7.2 Future Work

Tracking of Multiple targets at one time and prioritizing few threats over others in

complex combat zone scenarios can be done in future by extending the developed

algorithms.

Predicting the Missile’s Position and exact Velocity in 3D using the Extended

Kalman filter (EKF) can also be a valuable contribution. This will require many

missile parameters which can be extracted with real time physics based modeling

of the missiles , combustion models , particle scattering models and real time

environment modeling of the terrain.

Time to Impact (TTI) calculation , Range calculation will also be possible once

position and velocity is calculated.

Detection ranges of missile warning sensors may become less in front of advanced

modern low IR and low UV emission motors of the missiles. This challenge can

be met with research regarding alternate means of detection in future.

Advancements in SBUV sensor development technology can bring promising re-

sults in the field of development of more precise missile detection systems. Despite

some promising results in the technology of SBUV sensor development, further re-

search to enhance reliability and support reproducibility of these sensors is still

needed.
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